Support Vector Regression for Financial Time Series Forecasting

نویسندگان

  • Wei Hao
  • Songnian Yu
چکیده

This paper presents a novel trend-based segmentation method TBSM and the support vector regression SVR for financial time series forecasting. The model is named as TBSM-SVR. Over the last decade, SVR has been a popular forecasting model for nonlinear time series problem. The general segmentation method, that is, the piecewise linear representation PLR , has been applied to locate a set of trading points within a financial time series data. However, owing to the dynamics in stock trading, PLR cannot reflect the trend changes within a specific time period. Therefore, a trend based segmentation method is developed in this research to overcome this issue. The model is tested using various stocks from America stock market with different trend tendencies. The experimental results show that the proposed model can generate more profits than other models. The model is very practical for real-world application, and it can be implemented in a real-time environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Financial time series forecasting using independent component analysis and support vector regression

As financial time series are inherently noisy and non-stationary, it is regarded as one of the most challenging applications of time series forecasting. Due to the advantages of generalization capability in obtaining a unique solution, support vector regression (SVR) has also been successfully applied in financial time series forecasting. In the modeling of financial time series using SVR, one ...

متن کامل

Multivariate Dynamic Kernels for Financial Time Series Forecasting

We propose a forecasting procedure based on multivariate dynamic kernels, with the capability of integrating information measured at different frequencies and at irregular time intervals in financial markets. A data compression process redefines the original financial time series into temporal data blocks, analyzing the temporal information of multiple time intervals. The analysis is done throu...

متن کامل

AN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING

Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...

متن کامل

Time series forecasting of Bitcoin price based on ARIMA and machine learning approaches

Bitcoin as the current leader in cryptocurrencies is a new asset class receiving significant attention in the financial and investment community and presents an interesting time series prediction problem. In this paper, some forecasting models based on classical like ARIMA and machine learning approaches including Kriging, Artificial Neural Network (ANN), Bayesian method, Support Vector Machine...

متن کامل

Comparison of Neural Network Models, Vector Auto Regression (VAR), Bayesian Vector-Autoregressive (BVAR), Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) Process and Time Series in Forecasting Inflation in ‎Iran‎

‎This paper has two aims. The first is forecasting inflation in Iran using Macroeconomic variables data in Iran (Inflation rate, liquidity, GDP, prices of imported goods and exchange rates) , and the second is comparing the performance of forecasting vector auto regression (VAR), Bayesian Vector-Autoregressive (BVAR), GARCH, time series and neural network models by which Iran's inflation is for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006